Product Information Sheet

ISSUE A

ALLOY 938

A. W. Fraser Alloy 938 is a high leaded tin bronze bearing and bushing material conforming to the requirements of UNS C93800.

Alloy 938 is most suitable in applications where shaft alignment or shaft wear is a problem. The high lead content of this alloy gives it the ability to tolerate interupted lubrication. The lead also alows dirt particles to become embedded harmlessly in the bearing's surface.

Alloy 938 has good corrosion resistance.

The composition of A. W. Fraser alloy 938 is strictly controlled as are the casting conditions to ensure even distribution of the lead throughout the casting.

ALLOY 938 - HIGH LEAD TIN BRONZE

Chemical Composition - percent

Element		Nominal	
Copper	Cu	75.0 - 79.0	Remainder
Tin	Sn	6.3 - 7.5	7.0
Lead	Pb	13.0 - 16.0	14.0
Zinc	Zn	0.8 maximum	< 0.4
Nickel	Ni	1.0 maximum	
Iron	Fe	0.15 maximum	
Antimony	Sb	0.80 maximum	
Aluminium	Al	0.005 maximum	

Mechanical Properties [Typical]

Yeild Strength (minimum) Tensile Strength (minimum) Elongation (minimum) 5% Typical Hardness Specific Gravity Machinability Rating (Free Machining Brass=100)

Compressive Strength 0.1% Permanent Set Max. Operating Temperature Stress Relieving Temperature Time at Temperature

Continuous Cast

110 MPa (16,000 psi) 172 MPa (25,000 psi)

55 BHN 9.25 80

83 MPa (12,000 psi) 230°C (446°F) 260°C (500°F) 1 hour per 25mm of section thickness

Comparative Specifications

ASTM B505 - C93800; SAE 67; BS1400 - LB1^{*}; DIN 1716 - G-CuPb15Sn^{*} * Similar but not identical

SUMMARY OF PROPERTIES